Instability of constant mean curvature surfaces of revolution in spherically symmetric spaces
نویسنده
چکیده
We study the stability properties of constant mean curvature (CMC) surfaces of revolution in general simply-connected spherically symmetric 3-spaces, and in the particular case of a positive-definite 3dimensional slice of Schwarzschild space. We derive their Jacobi operators, and then prove that closed CMC tori of revolution in such spaces are unstable, and finally numerically compute the Morse index of some minimal and closed non-minimal CMC surfaces of revolution in the slice of Schwarzschild space. M.S.C. 2000: 53C42; 53A10, 53A35.
منابع مشابه
Surfaces of annulus type with constant mean curvature in Lorentz-Minkowski space
In this paper we solve the Plateau problem for spacelike surfaces with constant mean curvature in Lorentz-Minkowski three-space L and spanning two circular (axially symmetric) contours in parallel planes. We prove that rotational symmetric surfaces are the only compact spacelike surfaces in L of constant mean curvature bounded by two concentric circles in parallel planes. As conclusion, we char...
متن کاملSurfaces of Constant Curvature in the Pseudo-Galilean Space
We develop the local theory of surfaces immersed in the pseudo-Galilean space, a special type of Cayley-Klein spaces. We define principal, Gaussian, and mean curvatures. By this, the general setting for study of surfaces of constant curvature in the pseudo-Galilean space is provided. We describe surfaces of revolution of constant curvature. We introduce special local coordinates for surfaces of...
متن کاملSurfaces of Revolution with Constant Mean Curvature in Hyperbolic 3-Space
In this paper, we construct surfaces of revolution with constant mean curvature H = c and minimal surfaces of revolution in hyperbolic 3-space H(−c) of constant sectional curvature −c. It is shown that surfaces of revolution with constant mean curvature H = c in H(−c) tend toward the catenoid, the minimal surface of revolution in Euclidean 3-space E as c → 0. Minimal surfaces of revolution in H...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملOn the Moduli Spaces of Embedded Constant Mean Curvature Surfaces with Three or Four Ends
We are interested in explicitly parametrizing the moduli spaces Mg,k of embedded surfaces in R with finite genus g and a finite number of ends k having constant mean curvature. By rescaling we may assume this constant is 1, the mean curvature of the unit sphere. Two surfaces in R are indentified as points inMg,k if there is isometry of R carrying one surface to the other. Moreover, we shall inc...
متن کامل